Interview with Mike Ambinder of Valve Software

Valve Software has designed top-selling games including Left 4 Dead, Half-Life, and Team Fortress.  I recently spoke with Mike Ambinder, PhD, the company’s full-time experimental psychologist, to discuss the professional practices that ensure high-quality game experiences.

Q: What’s your role at Valve?
A: My job is to apply knowledge and methodologies from psychology to game design.  That means performing statistical analyses, developing playtesting methodologies, conducting  design experiments, a little bit of interface design, and investigating alternative hardware among other things.

Q: How can psychology guide game design?

A: Well for example, in the Left 4 Dead series there are several predetermined locations in the game called “drop points” where health items or weapons will spontaneously appear.  To decide what’s dropped, where, and when we considered reward and reinforcement schedules, which are elements of behavioral psychology.  You can put things on a fixed schedule so that they’ll appear at regular intervals.  This makes the gameplay experience more predictable, and there can be real value in that.  Or you can use a variable schedule so that you don’t know what’s going to show up or when it’ll pop in.  Variable schedules can create a higher rate of engagement in the game and make the experience more enjoyable as uncertainty of occurrence can increase arousal.  A large component of the gameplay in the Left 4 Dead series is the use of these variable reinforcement schedules.

Q: How is testing integrated into the design process?
A: We’re constantly playtesting.  Our philosophy is to playtest as much as possible, and to start it as soon as we have a playable prototype.  Of course our designers are experienced and generally make good decisions about gameplay, but we don’t want to just assume we’ve got it right.  Game designs are hypotheses, and every instance of play is an experiment.

Q: What’s your standard testing method?

A: We use a variety of methods, but the most favored is direct observation of real players working their way through the game.  I’m not a fan of the think-aloud protocol, in part because the constant prompting detracts from the gameplay experience and can introduce inadvertent bias, and in part because people can be really bad at explaining why they do what they do.  Better to just sit back, watch, say nothing, and try to understand the player’s actions.  So quiet, direct observation is our preferred method, but we combine that with player Q&As, surveys, quantitative metrics, eyetracking, and design experiments, and we’re investigating methods of measuring the player’s emotional experience during gameplay.

Q: How can eyetracking help to inform game design?
A: Generally, you want to eliminate frequent long eye movements because they lead to fatigue.  For example, if the area map is in the bottom right corner of the display and your progress through that map is shown in the upper left, you’ll see the player’s eyes transiting the screen a lot.  The proximity compatibility principle tells us that things which are mentally proximal should also be physically proximal, and eyetracking can tell us which things are mentally proximal.  By arranging related information together, you can reduce fatigue and make the interface more efficient to use.

Q: And how can you measure the emotional experience of gameplay?

A: This is still early on, but we’re looking at biometric methods like EEGs which measure brainwaves, and EMGs which measure the electrical activity of muscles.  But there are questions of their cost and efficacy.  They’re also both very intrusive methods, requiring either a cap that’s wired into a machine or electrodes attached to the face.  In testing you want to mimic the home experience as much as possible, and EEGs and EMGs both make it feel more like a lab environment.  But new technologies are emerging that could change that.  Remote detection of facial expression seems promising; these systems produce data along the lines of an EMG but only use a camera to measure muscle activity in the face.

Emotion can be viewed as a vector and measured along two scales: magnitude and valence.  Magnitude describes the intensity of the emotion, while valence describes its quality (either positive or negative).  You can measure the magnitude pretty reliably using something like heart rate, but understanding the valence is the tricky part.  How do you know if that intense emotional response is good or bad?  Of course you could just ask, but again that’s not a preferred method because people don’t describe their own experiences reliably and you’re introducing bias into the response.  Context is a better basis.  If someone is getting killed repeatedly, you can assume that they’re experiencing a negative emotion.  However, to validate we’d love to have a system which quantifies valence in real time.

Once we can measure these qualities reliably, we can start asking what the ideal emotional experience should look like over the course of the player’s interaction with the game.  Maybe that would be something like a pattern of peaks and valleys that steadily rises over time, as opposed to a prolonged burst of emotion that’s experienced all at once.  That seems like a plausible theory, but we won’t know until we’ve measured it.

Q: What are some of the design elements that you’ve found make better player experiences?
A: I can suggest a few things.  First, the player needs to be able to understand the experience.  If you die, you need to understand why you died.  If you reach a decision point, you need to understand what the implications are of taking path A or path B.  The designer needs to provide a sensible environment.

Variety is also really important.  Don’t give people the same monsters again and again, or force them to traverse the same levels over and over. There are obvious counterpoints to this, and the constructs of the game may dictate a lack of variety, so it’s not a hard and fast rule (none of these are), but it is something we try and emphasize.  The Left 4 Dead series is a great example, because you’re always interacting with a new set of players with different skill levels and different tactics, and that will completely change the dynamic of the game.  It doesn’t play the same way twice.

Third, you want to provide people with a feeling of continuous advancement.  People prize rewards if they increase in perceived value.  They want to feel that the required level of skill builds gradually as the game progresses.

Finally, have the player make interesting choices.  Which weapon should I choose?  Which armor should I take?  If these decisions don’t involve meaningful tradeoffs, then you’re probably not creating an enjoyable experience.

Q: How do you foster collaboration in multiplayer games?
A: Left 4 Dead is really designed to force players to cooperate.  If you go out on your own, for example, you’ll get incapacitated very quickly.  The game doesn’t prevent you from doing that — it’s a choice you can exercise, but it’s inevitably a losing strategy.  If you have other players near you then you can collectively put up a stronger fight, and when you fall then they can easily revive you.

Testing helped us improve collaboration in Left 4 Dead as well.  In the original design, the thinking was that players would build awareness of each others’ locations just through verbal cues, speaking to one another through a headset.  But it turned out that in the midst of gameplay that doesn’t work well.  When a teammate fell and needed to be revived, the other players had a difficult time finding him or her.  They needed another cue, so we introduced glowing outlines that appear around your teammates’ bodies, and which are visible through walls.  We found that really increased the players’ situational awareness, facilitated cooperation, and created a better gameplay experience.

Q: What kinds of quantitative metrics do you use to inform design?
A: We work with tons of data.  We can track any variable available in the game.  We’ll take information about where people die in each level, then overlay it on an image of the level to show whether people are dying in the right places, and in the right numbers.  We can examine the growth in players’ skill levels over time by any of various measures, depending upon the needs of the game’s design.  That may be a fairly coarse metric such as the ratio of kills to deaths, who gets the most kills, who stays alive the longest, and so on.  Or you can apply several measured in combination to satisfy a very precise definition of the ideal skill level, such as players who have a moderately high rate of kills but who win a lot and stay alive for a very long time.

I really appreciate your time.  I’d wish you luck, but with these kinds of practices it really doesn’t sound like you need it.

Advertisements

3 comments so far

  1. Kell on

    Am I really the only one to comment on this article? It’s a shame this isn’t widely read, while puerile nonsense about ‘games are art’ get massive page views.

    This is great stuff. Valve are the only game design company – at least of any significant profile – engaged in this sort of approach. They treat game design as a craft, and work to produce the best experience possible. It is tragic that it is so poorly appreciated. If games have a future as a valuable medium, this is the way into it.

  2. richard on

    hi just have a question, How has Psychology and Technology been combined to attract or addict players to the game Left For Dead?

  3. James on

    Heya, I think this is a brilliant example of the application of psychological technique in the gaming world. I cannot understand why more companies do not take this approach :/

    Thanks for the glimmer of hope you have given me ❤


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: